确保方案一次过的DC/DC开关电源的设计秘籍

发布时间:2011-12-9 阅读量:1700 来源: 我爱方案网 作者:

中心议题:
    *  DC/DC开关电源工作原理分析
    *  提出基于峰值电流控制的新型非隔离负电压DC/DC开关电源设计方案
解决方案:
    *  采用连续电流模式
    *  结合平均电路法构建小信号模型
    *  补偿网络设计

引言
  
随着电子技术的飞速发展,现代电子测量装置往往需要负电源为其内部的集成电路芯片与传感器供电。如集成运算放大器、电压比较器、霍尔传感器等。

负电源的好坏很大程度上影响电子测量装置运行的性能,严重的话会使测量的数据大大偏离预期。目前,电子测量装置的负电源通常采用抗干扰能力强,效率高的开关电源供电方式。以往的隔离开关电源技术通过变压器实现负电压的输出,但这会增大负电源的体积以及电路的复杂性。而随着越来越多专用集成DC/DC控制芯片的出现,使得电路简单、体积小的非隔离负电压开关电源在电子测量装置中得到了越来越广泛的应用。因此,对非隔离负电压开关电源的研究具有很高的实用价值。

传统的非隔离负电压开关电源的电路拓扑有以下两种,如图1、图2所示。图3是其滤波输出电容的充电电流波形。由图3可见,采用图2结构的可获得输出纹波更小的负电压电源,并且在相同电感峰值电流的情况下其带负载能力更强。由于图2的开关器件要接在电源的负极,这会使得其控制电路会比图1来得复杂,因此在市场也没有实现图2电路结构(类似于线性稳压电源调节芯片7915功能)的负电压开关电源控制芯片。

为了弥补现有非隔离负电压开关电源技术的不足,以获得一种带负载能力强、输出纹波小的非隔离负电压开关电源,本文提出一种采用Boost开关电源控制芯片LT1935及分立元件实现了图2所示原理的基于峰值电流控制的新型非隔离负电压DC/DC开关电源。
 
图1 传统的非隔离负电压开关电源电路结构1
 
图2 传统的非隔离负电压开关电源电路结构2
 
图3 两种开关电源滤波电容的充电电流波形

1 工作原理分析

本文设计的非隔离负电压DC/DC开关电源如图4所示,负电源工作在连续电流模式。当电源控制器LT1935内部的功率三极管导通时,直流电源给输出电感L1和输出电容C1充电。当电源控制器LT1935内部的功率三极管关断时,输出电感L1中的电流改由通过肖特基二极管VD1提供的低阻抗回路继续给输出电容C1充电直至下一个周期电源控制器LT1935内部的功率三极管再次导通。可见电容C1在输出电感L1储存能量和释放能量的过程中均获得充电,从而减小了输出纹波电压。同时,在CCM条件下,输出电流在LT1935内部功率三极管的导通和关断期间均通过输出电感L1,这很大程度上抑制了输出电流的波动,降低了输出纹波电流的影响,进而大大增加系统的带负载能力和效率。

 

 
反馈控制回路采用了峰值电流控制。相比传统的电压控制,峰值电流控制一方面能很好的改善电源的动态响应,另一方面还能实现快速的过电流保护,很大程度上提高了系统的可靠性。由于采用了电源控制器LT1935,其内部集成了峰值电路控制电路和斜坡补偿电路,非隔离负电压DC/DC开关电源反馈回路设计即转换为补偿网络设计,进而大大简化了反馈回路的设计。

为防止过高的直流电源对电源控制器的危害,这里使用稳压管VD2和VD3实现过电压保护。
 
图4 非隔离负电压DC/DC开关电源硬件电路图

2 补偿网络

2.1 非隔离负电压开关电源小信号建模

从本质上来讲,本文介绍的非隔离负电压DC/DC开关电源为非隔离负电压Buck开关电源,其等效功率级电路原理图如图5所示,这里考虑了输出滤波电容的等效串联电阻Resr对系统的影响。
 
图5 非隔离负电压Buck开关电源等效功率级电路原理图

图6给出图5利用平均电路法建立的非隔离负电压Buck开关电源CCM大信号模型。设Vi为输入电压的稳态值,Vo为输出电压的稳态值,Vpc为受控电压源两端电压的稳态值,Ii为输入电流的稳态值,IL为输出电感电流的稳态值,D为占空比的稳态值。
 
图6 非隔离负电压Buck开关电源CCM大信号模型

引入上述稳态值对应的小信号扰动。
  
令:
  
可以推导出:
 
 

 

 
若小信号干扰满足D,忽略二次项并化简等式(3)和等式(4)得,的线性化表达式为:
 
根据等式(5)和等式(6),即可得到图7所示的用理想变压器表示非隔离负电压Buck开关电源的CCM小信号模型。
 
图7 非隔离负电压Buck开关电源CCM小信号模型

2.2 补偿网络设计

图8为电流连续模式下峰值电流控制(CCMCPM)型非隔离负电压Buck开关电源的系统框图。控制环路包括了电流内环和电压外环两个部分。补偿网络属于电压外环,因此设计补偿网络需要先建立包含电流控制内环的小信号模型。
 
图8 CCM-CPM型非隔离负电压Buck开关电源系统框图

假设系统稳定,且忽略输出电感纹波电压及人工斜坡补偿的影响,则输出电感电流等于控制电流,即:

根据图7所示的非隔离负电压Buck开关电源CCM小信号模型,同时将等式(7)带入化简得,CCM-CPM型非隔离负电压Buck开关电源的动态方程为:
  
利用等式(8)和等式(9)可以很容易的建立图9所示的CCM-CPM型非隔离负电压Buck开关电源小信号模型。
 
图9 CCM-PWM型非隔离负电压Buck开关电源小信号模型

考虑到控制电流与控制电压满足:

 

 


式中Rs为电流采样电阻;k为采样电流放大系数。将式(10)带入式(9),得控制电压与输出电压的传递函数Ap ( s)为:
  
分析可知,控制对象Ap (s)为单极点型控制对象,并且受等效串联电阻

相关资讯
安全继电器的原理和选型注意事项

安全继电器是一种用于监测和保护机器运行过程中的安全的电气设备,主要用于工业生产中的安全保护,可以有效地避免人员伤害和机器事故的发生。该设备通过检测机器的运行状态和环境变化,能够及时切断电源,停止机器的运行,保护工人的安全。

贸泽开售ADI MAX32690 Arm Cortex-M4F BLE 5.2微控制器,适用于工业和可穿戴设备

2024年5月6日 – 专注于引入新品的全球电子元器件和工业自动化产品授权代理商贸泽电子 (Mouser Electronics) 即日起开售Analog Devices, Inc. (ADI) 的MAX32690微控制器 (MCU)。MAX32690是一款先进的片上系统 (SoC),将所有必要的处理能力与各种消费类和工业物联网 (IoT) 应用所需的易连接性和蓝牙功能结合在一起,是适用于电池供电应用的理想型超高效MCU。

现在,苹果手机更需要中国市场!

苹果需要中国胜过中国需要苹果

突发!多家半导体大厂宣布退出大陆市场!

封测巨头京元电子宣布出售京隆科技所有股权

固态继电器作用及特点

固态继电器是用半导体器件代替传统电接点作为切换装置的具有继电器特性的无触点开关器件,单相SSR为四端有源器件,其中两个输入控制端,两个输出端,输入输出间为光隔离,输入端加上直流或脉冲信号到一定电流值后,输出端就能从断态转变成通态。