5G技术是神话吗?说华为拿下5G时代还为时过早

发布时间:2016-12-1 阅读量:779 来源: 我爱方案网 作者: cywen

在前段时间的互联网大会上,中国华为公司主推的Polar Code(极化码)方案,成为5G控制信道eMBB场景编码方案。消息一出,媒体为之欣喜,甚至有的已经用上华为定义5G时代的标题了,然而真的是这样吗?在厘清事实之前,我们需要要重新或者说开始了解5G技术。



5G通信到底是什么
  
5G,顾名思义是第五代通信技术,3GPP定义了5G三大场景:

增强型移动宽带(eMBB,Enhance Mobile Broadband),按照计划能够在人口密集区为用户提供1Gbps用户体验速率和10Gbps峰值速率,在流量热点区域,可实现每平方公里数十Tbps的流量密度。

海量物联网通信(mMTC,Massive Machine Type Communication),不仅能够将医疗仪器、家用电器和手持通讯终端等全部连接在一起,还能面向智慧城市、环境监测、智能农业、森林防火等以传感和数据采集为目标的应用场景,并提供具备超千亿网络连接的支持能力。

低时延、高可靠通信(uRLLC,Ultra Reliable & Low Latency Communication),主要面向智能无人驾驶、工业自动化等需要低时延高可靠连接的业务,能够为用户提供毫秒级的端到端时延和接近100%的业务可靠性保证。

从中可以看出,相对于4G通信,5G通信能够提供覆盖更广泛的信号,而且上网的速度更快、流量密度更大,同时还将渗透到物联网中,实现智慧城市、环境监测、智能农业、工业自动化、医疗仪器、无人驾驶、家用电器和手持通讯终端的深度融合,换言之,就是万物互联。


5G通信有哪些关键技术
  
有媒体将中国华为主推的Polar在信道控制eMBB场景中击败美国主推的LDPC和法国主推的Turbo2.0,认为是华为掌握了5G的核心专利,并用“华为碾压高通,拿下5G时代”来形容。但这种描述是比较值得商榷的。
  
本次高通和华为争夺的eMBB场景编码方案,就这件事情本身而言还不能成为核心专利。核心专利是由几个体系来组成的,一般来说,物理层都认为是最核心的关键技术,这其中就包括编码,编码一方面可以传递信号,同时编码技术也可以增加抗干扰能力,Turbo2.0、Polar Code、LDPC就是目前法国、中国、美国主推的编码方案。

另外一个就是多址,多址技术指的是解决多个用户同时和基站通信的问题,怎么来分享资源的技术,第一代通信采用的是FDMA技术,第二代通信采用的是TDMA技术,第三代通信采用的是CDMA技术,第四代通信采用的是OFDMA技术,5G时代多址是一个很关键的争夺点,现在流行看法就是NOMA。不过,4G奠基性技术“软频率复用”的发明人杨学志不久前撰文《NOMA只是一个误解》,认为NOMA未必能问鼎5G时代,依旧存在一定变数。

还有一项关键技术就是多天线,多天线是一种增加容量的技术,在理论上能把容量提高很多倍。简单的说,就是在现有多天线的基础上通过增加天线数,甚至配置数十根甚至数百根以上天线,支持数十个独立的空间数据流,实现用户系统频谱效率的大幅提升。现在比较火的是MIMO技术,大规模MIMO技术不仅能够在不增加频谱资源的情况下降低发射功率、减小小区内以及小区间干扰,还能实现频谱效率和功率效率在4G 的基础上再提升一个量级。此外,射频调制解调技术也属于关键技术。 

  
为何说“华为碾压高通,拿下5G时代”名不副实

所谓核心专利,是指能在物理层方面做出基础性的创新并掌握话语权的专利技术,所谓话语权就是,一旦技术商用后,就具备狮子大开口的技术实力。比如高通在3G时代掌握拥有软切换和功率控制两大核心专利以及两千项外围专利,具备了像爱立信、华为、诺基亚、中兴等全球通信厂商征收“高通税”的技术资本。华为如果仅凭一项Polar码是构不成核心专利的,何况Polar码也并非华为原创。
  
美国高通主推的LDPC是由国际信息领域泰斗Gallager约五十年前提出的,经过50多年的发展和改进,技术已经非常成熟,虽然由于提出的时间较早,部分理念已经不能称之为先进,但经过多次改进和扩展,依旧是非常优秀的技术。
  
法国主推的Turbo2.0是Turbo的延伸和发展,Turbo码是4G时代使用的编码之一,在技术上同样非常成熟。而中国主推的Polar码是由土耳其毕尔肯大学Erdal Arikan教授(是Gallager的学生)在2008年首次提出,polar码的优势在于纠错能力强,而且是世界上唯一一种已知的能够被严格证明达到信道容量的信道编码方法,这对于高带宽网络的规范管理具有重要的意义,在某些应用场景中已经取得了和Turbo码和LDPC码相同或更优的性能。但劣势也非常明显,就是诞生时间太短,技术不够成熟。
  
本次Polar码战胜LDPC码和Turbo码赢得的是eMBB场景短码控制信道。之前说过,3GPP定义了5G三大场景:增强型移动宽带(eMBB)、海量物联网通信(mMTC)、低时延、高可靠通信(uRLLC)。而华为这次仅仅获得了eMBB场景中短码的控制信道,而高通却斩获了eMBB场景的长码和短码的编码信道,而且mMTC和URLLC场景的编码方案还悬而未决。抛开之前提到的多址技术、多天线技术、射频调制解调技术等关键技术,仅仅凭华为在编码上取得了eMBB场景中短码的控制信道,一些媒体就声称“华为碾压高通,拿下5G时代”,这既不符合客观实际,也颇有捧杀的嫌疑。
  
诚然,本次能够在编码标准的制定上占据一席之地是中国通信产业取得的胜利和实力的体现,但也不可忘乎所以,将取得的局部性胜利定义为“拿下5G时代”。
相关资讯
YXC可编程振荡器,频点100MHz,工作电压3.3V,应用于笔记本电脑

在笔记本电脑中,晶振通常用于控制中央处理器(CPU)和其他重要组件的时钟频率

YXC可编程晶振,频点10.48576MHz,封装5032,应用于光端机

在光端机中,晶振主要用于控制和同步数据传输、处理和调度

YXC可编程振荡器,频点22.578MHz,工作电压3.3V,应用于游戏机

晶振在游戏机中扮演着的角色是为CPU、GPU、音频处理器等各个组件提供稳定的时钟信号

永磁同步电机的工作原理及优势解析

永磁同步电动机具有结构简单,体积小、效率高、功率因数高等优点。永磁同步电动机已经在冶金行业(炼铁厂和烧结厂等)、陶瓷行业(球磨机)、橡胶行业(密炼机)、石油行业(抽油机)、纺织行业(倍捻机、细纱机)等行业的中、低压电动机中获得业绩,并逐步积累设计和运行经验。

超声波流量计设计要点及应用案例

超声波技术探测流速,测量点在机体前方,不破坏流场;测量精度高,测流线性,可测瞬时流速,也可测平均流速