【投稿】24 GHz至44 GHz宽带集成上变频器和下变频器可提升微波无线电性能,同时缩小尺寸

发布时间:2019-08-28 阅读量:568 来源: 我爱方案网 作者: James Wong、Kasey Chatzopoulos和Murtaza Thahirally

ADI公司推出了一对高集成的微波上下变频器,ADMV1013和ADMV1014。这两颗器件的工作频率极宽,从24 GHz到44 GHz,并提供50 Ω匹配,同时可以支持大于1 GHz的瞬时带宽。


ADMV1013和ADMV1014的性能特性简化了小型5G毫米波(mmW)平台的设计和实现,这些平台包括回传和前传应用中常见的28 GHz和39 GHz频段,以及许多其他的超带宽发射器和接收器应用。


每个上变频器和下变频器芯片都是高集成的(见图1),由IQ混频器及片内正交移相器构成,可配置为基带IQ模式(零中频,IQ频率支持dc至6 GHz),或者配置为中频模式(实中频,中频频率支持800 MHz至6 GHz)。上变频器的RF输出端集成了一个含压控衰减器(VVA)的驱动放大器,下变频器的RF输入端包含低噪声放大器(LNA)和带VVA的增益放大器。两个芯片的本振(LO)链路由一个集成式LO缓冲放大器、一个四倍频器和一个可编程的带通滤波器组成。大部分可编程和校准功能都通过SPI接口进行控制,这使得IC易于通过软件配置至出色的性能水平。

241579-Fig_1a.jpg241579-Fig_1b.jpg

图1.(a) ADMV1013上变频器芯片框图。(b) ADMV1014下变频器芯片框图。


ADMV1013上变频器内部视图


ADMV1013提供两种频率转换模式。一种模式是从基带I和Q直接上变频至RF频段。在这种I/Q模式下,基带I和Q差分输入信号范围是从dc到6 GHz,例如,由一对高速数模转换器(DAC)产生的信号。IQ输入信号的共模电压范围为0 V至2.6 V;因此,它们可以满足大部分DAC的接口需求。当所选DAC的共模电压在这个范围内时,可以通过配置上变频器的寄存器,使其输入共模电压和DAC输出的共模电压实现最佳的匹配,从而简化接口设计。另一种模式是复IF输入(例如由正交数字上变频器器件生成的信号),单边带上变频到RF频段。ADMV1013的独特之处在于,它能够在I/Q模式下对I和Q混频器的直流偏置误差进行数字校正,从而改善RF输出的LO泄漏。校准之后,在最大增益下,RF输出端的LO泄漏可以低至-45 dBm。对零中频无线电设计造成妨碍的一个更困难的挑战是I和Q的相位不平衡,导致边带抑制能力差。零中频面临的另一个挑战是边带通常太接近微波载波,使滤波器难以实现。ADMV1013解决了这个问题,它允许用户通过寄存器调谐对I和Q相位不平衡进行数字校正。正常操作期间,上变频器展现出未经校准的26 dBc边带抑制。使用片内寄存器之后,其边带抑制经过校准可以提高到约36 dBc。两种校准特性都是通过SPI实现,无需额外电路。在I/Q模式下,还可以通过调节基带I和Q DAC的相位平衡来进一步提高边带抑制。这些性能增强特性帮助最小化外部滤波,同时改善微波频率下的无线电性能。

 QQ浏览器截图20190828110950.png

图2.采用6 mm × 6 mm表贴封装的ADMV1013在评估板上的图示。


集成了LO缓冲器之后,该部件所需的驱动力仅为0 dBm。因此,可使用集成压控振荡器(VCO)的频综(例如ADF4372或ADF5610)直接地驱动该器件,进一步减少外部组件数量。片内四倍频器将LO频率倍升至所需的载波频率,然后通过可编程的带通滤波器滤除不需要的倍频器谐波,该带通滤波器放置在混频器正交相位生成模块之前。这种布局大大减少了进入混频器的杂散频率,同时允许该部件与外部低成本、低频率的频率合成器/VCO协同工作。然后,经过调制的RF输出通过一对放大器级(两者中间存在一个VVA)进行放大。增益控制模块为用户提供35 dB调节范围,最大级联转换增益为23 dB。ADMV1013采用40引脚基板栅格阵列封装(见图2)。这些特性结合起来,可以提供卓越的性能、最大的灵活性和易用性,同时最大程度减少需要的外部组件的数量。因此,可以实现小型蜂窝基站等小型微波平台。

 

ADMV1014下变频器内部视图


ADMV1014也有一些相似的元件,例如其LO路径中包含LO缓冲器、四倍频器、可编程的带通滤波器,以及正交移相器。但是,构建作为下变频器件(见图1b中的框图),ADMV1014的RF前端中安装有一个LNA,紧接着安装了一个VVA和一个放大器。连续的19 dB增益调整范围由施加给VCTRL引脚的dc电压进行控制。用户可以选择在I/Q模式下使用ADMV1014作为从微波到基带dc的直接解调器。在这种模式下,经过解调的I和Q信号在各自的I和Q差分输出处放大。它们的增益和dc共模电压可以通过SPI由寄存器设置,使得差分信号可以dc耦合到(例如)一对基带模数转换器(ADC)。或者,ADMV1014可以用作单端复IF端口的镜像抑制下变频器。在任何一种模式下,I和Q相位、幅度的不平衡都可以通过SPI进行校正,在下变频器解调至基带或IF时,提高其镜像抑制性能。总的来说,下变频器在24 GHz至42 GHz频率范围内,可以提供5.5 dB总级联噪声系数,以及17 dB最大转换增益。当工作频率接近基带边缘(高达44 GHz)时,级联式NF仍然坚定保持6 dB。


22.png

图3.采用更小型的5 mm × 5 mm封装的ADMV1014在评估板上的图示。


大幅提升5G mmW无线电性能


图4所示为下变频器在28 GHz频率时的测量性能,测量时,采用5G NR波形,包含4个独立的100 MHz通道,每个通道都在-20 dBm输入功率下调制至256 QAM。测量得出的EVM结果为-40 dB (1% rms),支持对mmW 5G所需的高阶调制方案进行解调。凭借上下变频器>1 GHz的带宽容量,以及上变频器的23 dBm OIP3和下变频器的0 dBm IIP3,其组合可以支持高阶QAM调制,从而实现更高的数据吞吐量。此外,该器件也支持其他应用,如卫星和地面接收站宽带通信链路、安全通信无线电、RF测试设备和雷达系统。其出色的线性度和镜像抑制性能令人瞩目,与紧凑的解决方案尺寸、较小外形、高性能微波链路结合之后,可以实现宽带基站。

33.png44.png图4.测量得出的EVM性能(rms百分比)与28 GHz时的输入功率以及对应的256 QAM星座图。

 

作者简介


James Wong是ADI公司的RF产品营销经理。他曾担任高级营销和销售职位超过25年。此外,他从事RF、模拟电路和系统设计工作超过25年。Kasey Chatzopoulos是ADI公司微波通信部(MCG)的产品应用经理。Murtaza Thahirally是ADI公司微波通信部(MCG)的应用工程师。他负责为MCG的微波集成频率转换产品提供支持。



欢迎工程师或FAE来投稿,凡是未经发布的首发原创稿必有重金酬谢!投稿请联系包工头(微信ID:kuaibao52)

1068961199.jpg


  查看投稿细则》

 

 

相关资讯
提高热电偶测温电路性能的设计小妙招

在工业生产过程中,温度是需要测量和控制的重要参数之一。在温度测量中,热电偶的应用极为广泛,它具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点。另外,由于热电偶是一种无源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子、管道内的气体或液体的温度及固体的表面温度。

你对电机驱动的所有要求这颗芯片都能满足

日前,拓尔微推出一颗适用于按摩椅、扫地机、吸尘器等大电流智能市场应用的直流有刷马达驱动,这可马达驱动峰值电流高达10A,功耗小,满足大部分电机驱动的所有要求。除此之外,拓尔微还有全桥驱动、栅极驱动、低边驱动、DC/DC、音频功放、充电协议、霍尔开关等系列产品可供选型,应用在按摩椅多个关键部件,为客户提供更全面的产品选型支持和一站式服务。

桥式电路技术特点与分析方案介绍

桥式电路基于基尔霍夫定律和欧姆定律的原理,通过电流和电压的比较来确定未知元件的值

Transphorm 最新技术白皮书: 常闭耗尽型 (D-Mode)与增强型 (E-Mode) 氮化镓晶体管的优势对比

氮化镓功率半导体器件的先锋企业 Transphorm说明了如何利用其Normally-Off D-Mode平台设计充分发挥氮化镓晶体管的优势,而E-Mode设计却必须在性能上做出妥协

【干货下载】编程小白的第一本Python入门书

本书通俗易懂,化繁为简,排版科学,用高效的学习方法让你快速入门Python,适合编程小白。