浅析电容式触摸感应原理与类型——工程师原创应用笔记

发布时间:2021-03-17 阅读量:766 来源: 我爱方案网 作者: 雕塑者

所有的电容式触摸的核心都是一组与电场相互作用的导体。


人体组织的皮肤是一种有损电解质,相当于导电电极,在简单的平行片电容中间隔着一层电介质,该系统中的大部分能量聚集在电容器极板之间,少许的能量会溢出到电容器极板以外的区域,当手指放在电容触摸系统时,相当于放置于能量溢出区域(称为:边缘场),并将增加该电容系统的导电表面积。

 

 image.png

 

电容感应的方法分为两种:自电容感应、互电容感应技术

 

自电容感应技术

自电容使用一个引脚,并测量该引脚和电源地之间的电容。即:驱动与传感器相连的引脚上的电流,由于将手指放在传感器上,其系统的电容会增加,因此其电压也会增加,实测电压的变化即可检测是否有手指进行触摸。这种技术一般用于单点触摸或滑条。

 

 image.png

 

互电容感应

互电容感应技术使用两个电容,一个为发送电极、一个为接收电极,TX引脚提供数字电压,并测量RX引脚上所接收到的电荷,在RX电极上接收到的电荷与两个电极间的互电容成正比,当TX和RX电极间放置手指时,互电容降低,因此RX电极上接收到的电荷也会降低。由此通过检测RX电极上的电荷检测触摸/无触摸状态。

 

 image.png

 

根据传感器感应的维度,大致可以分为:按键传感器(0维)、滑条传感器(1维)、触摸板传感器(2维)、接近感应传感器(3维)

 

零维传感器 

零维传感器在白色家电、照明控制等领域有众多的应用,其输出两种状态:有手指触摸、无手指触摸,如通过一根走线连接到控制器引脚的简单按键。

 

 image.png

 

当需要大量按键时,如计算器的键盘等,可以将电容传感器排列成一个矩阵

 

 image.png

 

一维传感器

一维传感器也称滑条传感器,适用于需要渐进式调节的控制应用,如照明调光、音量控制、图示均衡器等,一个滑条传感器由一系列称为段的电容传感器构成,某一个段的动作会导致邻近其他传感器的部分动作,通过插值算法的中心位置计算方式可以使触摸位置分辨率大于滑条段数量。

 

线性滑条,每个IO引脚连接一个滑条段

 

 image.png

双工滑条,每个IO引脚连接两个不同的滑条段

 

 image.png

 

辐射滑条,这种类型的滑条具备连续性,没有起点或终点

 

image.png

 

两维传感器

如触摸屏和触控板,通过按X和Y模式设置的线性滑条,可以确定手指的位置

 

 image.png

三维传感器

接近感应传感器在手或其他导体靠近的时候就能检测到,实现接近感应的一种方法是围着用户界面铺上一条长走线,该走线可在大范围内感应电容的变化,由此使得系统对用户的触摸感应显得更加快速

 

 image.png


作者介绍:雕塑者(笔名),一名乐于开源文化的工程师,个人公众号【硬件大熊】。后续原创技术应用笔记还将在我爱方案网上线,敬请期待!


来源:我爱方案网


版权声明:本文为博主原创,未经本人允许,禁止转载

相关资讯
无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。

拥有卓越性能的高精度超薄低功耗心电贴—YSX211SL

随着医疗技术的进步,心电监护设备在日常生活和医疗领域中起到了至关重要的作用。而无源晶振 YSX211SL 作为一种先进的心电贴产品,以其独特的优势在市场上备受瞩目。

可编程晶振选型应该注意事项

对于可编程晶振选型的话,需要根据企业的需求选择。在选择可编程晶振的时候注重晶振外观、晶振的频率、晶振的输出模式、晶振的型号等等,这些都是要注意的,尤其是晶振的频率和晶振输出模式以及晶振的型号都是需要注意的。

性能高的服务器—宽电压有源晶振YSO110TR 25MHZ,多种精度选择支持±10PPM—±30PPM

在现代科技发展中,服务器扮演着越来越重要的角色,为各种应用提供强大的计算和数据存储能力。而高品质的服务器组件是确保服务器稳定运行的关键。YSO110TR宽电压有源晶振,作为服务器的重要组成部分,具备多项优势,成为业界必备的可靠之选。

差分晶振怎么测量

其实对于差分晶振怎么测量方式有很多种,主要还是要看自己选择什么样的方式了,因为选择不同的测量方式步骤和操作方式是不同的。关于差分晶振怎么测量的方式,小扬给大家详细的分享一些吧!